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Introduction, alignment in parallel tomography >

t

θ x

y

u

Ru(·, θ
)

X-rays

• u: object to be measured
• v := Ru: Radon transform of u: X-ray projections or sinogram

• What we measure: misaligned sinogram ṽ(t, θ) = v(t−h, θ), h ∈ R
• Tomographic alignment inverse problem

given ṽ , find h ∈ R such that ṽ(·+ h, ·) ∈ R(R)
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given ṽ , find h ∈ R such that ṽ(·+ h, ·) ∈ R(R)
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Introduction, alignment in parallel tomography > example

• Numerical phantom1

1based on the foam ct phantom library
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Introduction, alignment in parallel tomography > example

• Conventional (FBP) reconstruction2

t

θ ∈ [0, π[
Rf (sinogram)

FBP reconstruction

2Kak, Slaney. 1988
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• Conventional (FBP) reconstruction

t

θ ∈ [0, π[
Rf , h = 2 pixels

FBP reconstruction
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Introduction, alignment in parallel tomography > example

• Parenthesis: alignment for parallel projections, based on

v(t, θ) = v(−t, θ + π), ∀ (t, θ)

• We know

• With q = t + h
ṽ(q, 0) = ṽ(−q + 2h, π), ∀q

• Then, h is found with 1D signal registration:

h∗ = 1
2 shift(ṽ(·, 0), ṽ(−·, π)) = 1

2 argmax
t∈R

ṽ(·, 0) ⋆ ṽ(−·, π)
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6 / 39



Introduction, alignment in parallel tomography > example

• Parenthesis: alignment for parallel projections, based on

v(t, θ) = v(−t, θ + π), ∀ (t, θ)

• We know
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Fan-beam tomography >

β x
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u
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• u: object to be measured

• v := Qu: Fan-beam transform of u: fan-beam sinogram

• What we measure: ṽ(s, β) = v(s−h, β), h ∈ R
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Fan-beam tomography > alignment via fixed point iteration

• Fan-beam symmetry:

v(s, β) = v(−s, β + 2arctan
s

r
+ π), ∀ (s, β)

r : source-object distance, or source radius

• We have now

• with q = s + h

ṽ(q, 0) = ṽ(−q + 2h, 2 arctan
q − h

r
+ π), ∀q (1)
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Fan-beam tomography > alignment via fixed point iteration

• Denote the operators Λv(q) = v(q, 0)

Πhv(q) = v(−q + 2h, 2 arctan
q − h

r
+ π)

• and find h∗ by solving

min
h
{L(h) := ∥Λg̃ − Πhg̃∥22}

• L differentiable, locally convex, any gradient based algorithm works :

hk+1 = hk − γk
d

dh
L(h)

• Works on real fan-beam data: < 20 iterations
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Fan-beam tomography > alignment via fixed point iteration

• Denote the operators Λv(q) = v(q, 0)

Πhv(q) = v(−q + 2h, π + 2arctan
q − h

r
)

Lemma (arxiv:2310.09567, 2023)

ṽ verifies
Λṽ(q) ≈ Π0ṽ(q − 2h∗), ∀q ∈ R

with an error bounded by

max
q

∣∣Λṽ(q)− Π0ṽ(q − 2h∗)
∣∣ ≤ Ch∗ ,

with

Ch∗ = max
q,β

∣∣∣∣ṽ(q, β)− ṽ(q, β +
2h∗

r
)

∣∣∣∣
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ṽ verifies
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Fan-beam tomography > alignment via fixed point iteration

• We have a first rough approximation of h∗

h∗ ≈ 1
2 shift(Λṽ ,Π0ṽ)

that can be refined iteratively

• Denote the real function

Tv (h) = h + 1
2 shift(Λv ,Πhv)

• From (1), we have
shift(Λṽ ,Πh∗ ṽ) = 0

thus h∗ is a solution of
Tṽ (h) = h

i.e., h∗ is a fixed point of Tṽ
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Fan-beam tomography > alignment via fixed point iteration

Theorem (arxiv:2310.09567, 2023)

If the error Ch∗ is such that Tṽ is a contraction in a neighbourhood of
h∗. The fanbeam alignment problem has a unique solution as the limit of
the iteration

h0 = 0, hk+1 = Tṽ (hk)

• Finally, the iteration is

hk+1 = hk +
1
2 shift(Λṽ ,Πhk ṽ)

• 2D interpolations required only in

Πhk ṽ = ṽ(−q + 2hk , 2 arctan
q − hk

r
+ π)

• Works on real fan-beam data: < 5 iterations
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Cone-beam tomography >

source

z

y
xs

t

detector

h

rotational axis

β

η

• v := Cu: Cone-beam transform of u parameterized with (s, t, β)

• Alignment variables to estimate: {h, η}
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Cone-beam tomography > alignment via variable projection

• Notations: Translation and rotation operators τh, κη :{
τhv(s, t, β) = v(s − h, v , β)
κηv(u, v , β) = v(s cos η − t sin η, s sin η + t cos η, β)

• We measure now :

ṽ(s, t, β) = τhκηv(s, t, β)

• We still consider the fan-beam simmetry

v(s, 0, β) = v(−s, 0, β + 2arctan
s

r
+ π), ∀ (s, β)

• It is clear that κ−1
η τ−1

h ṽ = κ−ητ−hṽ = v then we have

κ−ητ−hṽ(s, 0, β) = κ−ητ−hṽ(−s, 0, β + 2arctan
s

r
+ π) (2)
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Cone-beam tomography > alignment via variable projection

• Denote the operatorsΛh,ηv(s, β) := κ−ητ−hv(s, 0, β)

Πh,ηv(s, β) := κ−ητ−hv(−s, 0, β + 2arctan
s

r
+ π)

• then (h∗, η∗) can be estimated by solving :

min
h,η

{L(h, η) := ∥Λh,η ṽ − Πh,η ṽ∥22}

• Too slow with standard quasi-newton methods
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• Too slow with standard quasi-newton methods

15 / 39



Cone-beam tomography > alignment via variable projection

• Denote the operatorsΛh,ηv(s, β) := κ−ητ−hv(s, 0, β)

Πh,ηv(s, β) := κ−ητ−hv(−s, 0, β + 2arctan
s

r
+ π)

• then (h∗, η∗) can be estimated by solving :

min
h,η

{L(h, η) := ∥Λh,η ṽ − Πh,η ṽ∥22}
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Cone-beam tomography > alignment via variable projection

• Variable projection (VP) approach3

• Project h onto η :

h∗(η) = argmin
h

L(h, η) = FP(η)

with a tilted fanbeam fixed point approach FP previously introduced

• and finally solve

η∗ = argmin
η

{L̄(η) := ∥Λh∗(η),η ṽ − Πh∗(η),η ṽ∥22}

3Golub, Pereyra. SIAM J. Num. Analysis. 1973
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Cone-beam tomography > alignment via variable projection

Theorem (Aravkin, van Leeuwen. 2012)

If L twice-differentiable and locally convex then:

d

dη
L̄(η) = ∇ηL(h

∗(η), η)

and a local minimum η∗ of L̄ with h∗(η∗) is a local minimum of L

• The algorithm4: {
hk = FP(ηk)
ηk+1 = ηk − γk∇ηL(hk , ηk)

• Depends on data, but works in < 5 minutes for 20003 CT data with
CPU python code and the Armijo step size rule5 for γk

4arxiv:2310.09567, 2023
5Nocedal, Wright. 2006
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Cone-beam tomography > on data

slice (y = 0) parallel to detector (z = 0)
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Cone-beam tomography > on data

ideal conebeam projection misaligned, h = 5 pix, η = 4◦
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Cone-beam tomography > on data

raw middle slice

VP aligned middle slice
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Cone-beam tomography > on data

raw middle slice VP aligned middle slice
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Cone-beam tomography > on data

raw 1
4 slice

VP aligned 1
4 slice
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Cone-beam tomography > on data

raw 1
4 slice VP aligned 1

4 slice
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Cone-beam tomography > on data

raw z = 0 slice

VP aligned z = 0 slice
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Cone-beam tomography > on data

raw z = 0 slice VP aligned z = 0 slice
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Cone-beam tomography > on real data

• Calibration object6

β = 0 β = π

6M. Ferucci et al, Prec. Eng. 2021
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Cone-beam tomography > on real data

5 mm

raw middle slice

5 mm

VP aligned
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Cone-beam tomography > on real data
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Cone-beam tomography > on real data
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Cone-beam tomography > on real data
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raw 1
4 slice

5 mm

VP aligned
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Cone-beam tomography > on real data

1 mm

raw 1
4 slice

1 mm

VP aligned

28 / 39



Cone-beam tomography > on real data

1 mm

raw 1
4 slice

1 mm

VP aligned

28 / 39



Cone-beam tomography > on real data

• Additive manufactured sample7

4 mm

z = 0, VP aligned y = 0, VP aligned

7printed by R. Santander, KU Leuven
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Cone-beam tomography > on real data

• Low quality (LQ) 5 min CT scan - high noise level

z = 0, VP aligned y = 0, VP aligned
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Cone-beam tomography > on real data

4 mm

middle slice

1 mm
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Cone-beam tomography > on real data
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Cone-beam tomography > on real data

4 mm

middle slice, LQ scan

1 mm
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After alignment, regularized reconstruction >

• Motivation: undersampled data

Phantom FBP 1024 projections FBP 60 projections
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After alignment, regularized reconstruction >

• Instead of FBP, we pose the problem as

min
u∈U

f (u) + g(Lu), f , g convex, f smooth, L linear (PP)

• Recall the conjugate f ∗ of f

f ∗(w) = sup
u∈U

⟨w , u⟩ − f (u)

then we have the dual problem of (PP)

max
w∈W

−g∗(−L∗w)− f ∗(y) (DP)

• Both (PP) and (DP) are solved e.g. with the Condat-Vu algorithm8:{
uk+1 = uk − τ∇f (uk)− τL∗wk

wk+1 = proxσg∗(wk + σLuk+1
)

8Condat. J. Optim. Theory Appl. 2013
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After alignment, regularized reconstruction >

• Total variation-regularized reconstruction:

f (u) = 1
2∥Ru − v∥22, g(w) = λ∥w∥2,1, L = ∇,

∇f (u) = R∗(Ru − v), L∗ = −div, proxσg∗(w) = Π∥w∥2,∞≤λ

• Ex: 60 noiseless projections

• Ex: 60 projections with Poison noisse
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Conclusions and perspectives >

• Goal: Fast, accurate and automatic tomography-based in-line
industrial inspection

• Convergence analysis of different algorithms to design a new
‘tomography-adapted’ algorithm

• Resolution analysis needs to be done with different f , g , L

• R and R∗ are expensive, we need faster approximations

• If challenging data, combine different regularizers by solving

min
u∈U

f (u) + g(Lu) + h(Ku), f , g , h convex, L,K linear
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→ gracias !
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